Detection of Genetic Alterations in Cancer by fully automated Next Generation Sequencer at Cancer Biology Department, GCRI

Mandalia Toral¹, Vora Hemangini²

Research Assistant¹, Professor & Head²

Cancer Biology Department, The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad, Gujarat, India Corresponding Author: hemangini.vora@gcriindia.org

¹https://orcid.org/0000-0002-3495-1600

²https://orcid.org/0000-0003-3893-9999

Cancer is now considered as Genetic Disease meaning that cancer is caused by certain changes to genes that control the cells function, especially how they grow and divide. Certain gene changes can cause cells to evade normal growth controls and transform into cancer. Some cancer-causing gene changes increase production of a protein that makes cells grow. The genetic changes are of two types, germline changes and somatic changes. Genetic changes that promote cancer can be inherited from parents to offspring called germline changes. Cancer-causing genetic changes can also be acquired during one's lifetime, as the result of errors that occur as cells divide or from exposure to carcinogenic substances that damage DNA, such as certain chemicals in tobacco smoke and chewing tobacco, and radiation, such as ultraviolet rays from the sun. Genetic changes that occur after conception are called somatic (or acquired) changes.

These gene mutations can be identified in DNA and RNA of an individual by Next Generation Sequencing (NGS). DNA or RNA sequencing tests can "read" DNA or RNA, respectively. By comparing the sequence of DNA or RNA in cancer cells with that in normal cells, identify genetic changes in cancer cells that may be driving the growth of an individual's cancer. This information will help to predict which therapies might work best against a particular tumor.

Currently, cancer treatment decisions are increasingly made on the basis of genomic information, and there are currently large numbers of genomic tests available to oncologists. Genomic tests designed to facilitate decisions about treatment management include those that identify alterations in single genes and multimarker tumor panels. Multigene panels include targeted gene-expression profiling tests that are used to estimate prognosis and/or the likelihood of recurrence. Multimarker panels also include DNA and RNA analysis through NGS technologies, including custom panels that profile multiple actionable driver genes, fusion genes and tumor characteristics that may guide the selection of targeted therapies.

Hence, NGS is of utmost requirement for identification of gene mutations in various cancers as well as in hereditary cancers for identification of family members at risk of cancer.

There are disease specific Multigene-Cancer Panels available that analyze number of genes associated with hereditary and sporadic cancers across major organ systems, including:

- breast and gynecologic (breast, ovarian, uterine)
- gastrointestinal (colorectal, gastric, pancreatic)
- endocrine (thyroid, paraganglioma/ pheochromocytoma, parathyroid, pituitary)
- genitourinary (renal/urinary tract, prostate)
- skin (melanoma, basal cell carcinoma)
- brain/nervous system
- sarcoma
- hematologic(myelodysplastic syndrome/ leukemia)

The Multigene-Cancer Panel is designed to maximize diagnostic yield for individuals with a personal or family history of mixed cancers affecting multiple organ systems.

Genetic testing of these genes may confirm a diagnosis and help guide treatment and management decisions. Identification of a disease-causing variant would also guide testing and diagnosis of at-risk relatives.

Recently, Next Generation Sequencing (NGS) facility: The IontorrentTM Genexus Integrated Sequencer and Ion GeneStudio S5 system (ThermoFisher Scientific) is established at the Cancer Biology Department, GCRI.

The Genexus Integrated Sequencer - Ion Torrent is the first turnkey next-generation sequencing (NGS) solution that automates all steps of the targeted NGS workflow starting from Nucleic Acid to results. The Nucleic Acid to Result workflow starts from purified and quantified nucleic acid

samples. Purified nucleic acid samples are pipet into a 96-well sample input plate and then loaded into the Genexus[™] Integrated Sequencer for library preparation, templating, and sequencing. With a single touchpoint and five minutes of hands-on time, the Genexus sequencer automates NGS library preparation (including cDNA synthesis), template preparation, sequencing, primary data analysis, and variant reporting for DNA, RNA, and cfDNA applications. Sequencing on the Genexus sequencer is done on a four-lane semiconductor chip: the Ion Torrent GX5 Chip. Each of the four lanes of the GX5 Chip supports the output of 12–15 million reads, and they can be used individually or all at once depending on throughput needs. Ion Torrent Genexus Software streamlines the NGS workflow by integrating the setup-to-report workflow within a single software ecosystem.

The **Ion GeneStudio S5 system** is designed to enable a broad range of targeted next-generation sequencing (NGS) applications with speed and scalability. Five Ion S5 chips (Ion 550 chip, Ion 540 chip, Ion 530 chip, Ion 520 chip and Ion 510 chip) enable a sequencing throughput range of 2M to 130M reads per run.

During standardization on NGS, eight samples of each DNA and RNA of AML patients were sequenced using the Ion Torrent Oncomine Myeloid Assay GX v2 by Molecular Diagnostics & Research Lab-2 (MDRL-2). Moreover, DNA and RNA samples of four lung carcinoma and four brain tumor patients were sequenced and analyzed using the Oncomine Precision Assay (OPA) by MDRL-3 and MDRL-1 of Cancer Biology Department, respectively.

Ion Torrent Oncomine Myeloid Assay GX v2

The Ion Torrent Oncomine Myeloid Assay GX v2 is a comprehensive targeted next-generation sequencing (NGS) assay designed for sensitive detection of myeloid disorder-associated DNA mutations and RNA fusion transcripts in blood and bone marrow samples. This assay is compatible with the Genexus Integrated Sequencer, which performs library preparation, sequencing, analysis, and reporting in an automated sample-to-result workflow. Depending on the workflow, results can be obtained in as little as a single day.

Oncomine Myeloid Assay GX v2 features include:

- Comprehensive coverage of key DNA mutations and >700 fusion transcripts associated with myeloid disorders
- Automated sample-to-report workflow on the Genexus sequencer in less than a day
- Sequencing of up to eight samples (DNA & RNA) per lane on a GX5 Chip in a single run
- Less than 15 minutes hands-on time
- Detection of somatic variants down to 5% allele frequency

With the Oncomine Myeloid Assay GX v2, 45 DNA target genes and 35 RNA fusion driver genes can be interrogated simultaneously, covering the most relevant targets associated with major myeloid disorders, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), myeloproliferative neoplasms (MPN), chronic myeloid leukemia (CML), chronic myelomonocytic leukemia (CMML) and juvenile myelomonocytic leukemia (JMML) (Table 1).

Hotspot genes (28) Full genes (17)		Fusion	driver gei	Expression genes (5)	Expression control genes (5)		
ANKRD2 KRAS	ASXL1	PRPF8	ABL1	HMGA2	NUP214	BAALC	EIF2B1
6 ABL1 MPL	BCOR	RB1	ABL2	JAK2	NUP98	MECOM	FBXW2
BRAF MYD8	3 CALR	RUNX1	BCL2	KAT6A	PAX5	MYC	PSMB2
CBL NPM1	CEBPA	SH2B3	BRAF	(MOZ)	PDGFR	SMC1A	PUM1
CSF3R NRAS	ETV6	STAG2	CCND1	KAT6B	PDGFRB	Wt1	TRIM27
DDX41 PPM1I	EZH2	TET2	CREBBP	KMT2A	RARA		
DNMT3 PTPN1	1 IKZF1	TP53	EGFR	KMT2A-	RUNX1		
A FLT3 SMC1.	NF1	ZRSR2	ETV6	PTDs	TCF3		
(ITD + SMC3	PHF6		FGFR1	MECOM	TFE3		
TKD) SETBI	1		FGFR2	MET	ZNF384		
GATA2 SF3B1			FUS	MLLT10			
HRAS SRSF2				MRTFA			
IDH1 U2AF1				(MKL1)			
IDH2 Wt1				MYBL1			
JAK2				MYH11			
KIT				NTRK2			
				NTRK3			

 Table 1: Gene content of the Oncomine Myeloid Assay GX v2 panel

Figure 1: Oncomine Precision Assay content

Patients		RNA	DNA				
	CNV Fu			SNV / Indels			
			Gene	Type of mutation			
Patient 1	-	-	WT1	Truncating- Loss of function			
Patient 2	-	-	DNMT3A	Hotspot- Loss of function			
			PTPN11	Hotspot- Gain of function			
Patient 3	-	-	FLT3	Hotspot- Gain of function			
			NPM1	Truncating- Loss of function			
			WT1	Truncating- Loss of function			
Patient 4	-	PML(6)-RARA(3)	DNMT3A	Hotspot- Loss of function			
			NPM1	Truncating- Loss of function			
Patient 5	-	-	-	-			
Patient 6	-	PML(6)- RARA(3)	-	-			
Patient 7	-	BCR(13)-ABL1(2)	IDH2	Hotspot- Gain of function			
			NPM1	Truncating- Loss of function			
Patient 8		BCR(13)-ABL1(2)	IDH2	Hotspot- Gain of function			
			NPM1	Truncating- Loss of function			

 Table 2: Results of Oncomine Myeloid assay GX v2

This multiplex primer design leverages Ion AmpliSeq technology to generate results from multiple samples in a single run. Sequencing results are automatically analyzed by Genexus software using an optimized assay-specific analysis workflow.

Oncomine Precision Assay

The Oncomine Precision Assay enables simultaneous detection of biomarkers across 50 genes, including key targets within EGFR, BRAF, KRAS, ALK, ROS1, NTRK, RET, and others, from both solid tissue and liquid biopsy samples. (Figure 1) The kit provides a targeted pan-cancer panel and library reagents sufficient to perform up to 32 sequencing reactions on the Ion Torrent Genexus Integrated Sequencer using the Ion Torrent GX5 Chip.

When used with the Oncomine Precision Assay, the Genexus Integrated Sequencer performs library preparation, sequencing, analysis, and reporting in an automated sample-to-result workflow that delivers results in as little as a single day. Moreover, the Oncomine Precision Assay, based on Ion TorrentTM AmpliSeqTM HD technology, requires only 10 ng of DNA or RNA, resulting in more than 95% of samples producing sequencing results. Minimum sample input and maximum sample success rate Key benefits of the Oncomine Precision Assay on the integrated Genexus System all operated by one Ion

Patients	Cancer site		DNA		RNA
		CNV		SNV / Indels	Fusion genes
			Gene	Type of mutation	
Patient 1	Brain	-	TP53	Hotspot- Loss of function	-
			FLT3	Hotspot- Gain of function	
			IDH1	Hotspot- Gain of function	
Patient 2	Brain	-	IDH1	Hotspot- Gain of function	ALAS1, ANKRD17, AR, EIF2B1, FGFR3 G6PD, HMBS, MET, TBP
Patient 3	Brain	AR	FLT3	Hotspot- Gain of function	ESR1-CCDC170, BAG4-
			IDH2	Hotspot- Gain of function	FGFR1.B1F2,
			NTRK1	Hotspot- Gain of function	
Patient 4	Brain	EGFR	FLT3	Hotspot- Gain of function	
			IDH1	Hotspot- Gain of function	
Patient 5	Lung	-	EGFR	Hotspot- Gain of function	
Patient 6	Lung	-	HRAS	Hotspot- Gain of function	
			TP53	Hotspot- Loss of function	
Patient 7	Lung	-	EGFR	Hotspot- Gain of function	AR, EGFR, EIF2B1, G6PD, HMBS, MET, TBP, TRIM27
Patient 8	Lung	AR	EGFR	Exon 9 deletion- Gain of Function	
			Tp53	Hotspot- Gain of function	

 Table 3: Results of Oncomine Precision Assay (OPA)

Table 4: Oncomine As	ssays and	Panels	compatible	with	Genexus	Integrated	Sequencer	and	Ion
GeneStudio S5 system									

Genexus	S5 Sequencer
	Oncomine Precision Assay Plus – 500 genes
	panel includes TMB, MSI
Oncomine Precision Assay – 50 genes panel	Oncomine Precision Assay – 50 genes panel
	Oncomine Focus Assay – 52 genes panel
Oncomine Comprehensive Assay v3 – 161	Oncomine Comprehensive Assay v3 – 161
genes panel	genes panel
	15-30 genes panel
	Oncomine Bladder Panel
Oncomine BRCA Panel	Oncomine BRCA Extended Panel
	Oncomine CRC and Pancreatic Panel
	Oncomine Gastric & Esophageal Panel
	Oncomine Gynecological Panel
	Oncomine Kidney Panel
	Oncomine Liver Panel
	Oncomine Lymphoma Panel
	Oncomine Melanoma Panel
	Oncomine Prostate Panel
Oncomine Myeloid Assay	Oncomine Myeloid Assay
Oncomine cfDNA Assay	Oncomine cfDNA Assay
	Oncomine Tumor Mutation Load Assay
	HLA Sequencing

TorrentTM GenexusTM software solution.

Oncomine Precision Assay key features include:

- Mutation, CNV, and fusion variant types across 50 key genes such as EGFR, ALK, BRAF, ROS1, RET, KRAS, PIK3CA, and ERBB2, among others
- One-day, hands-free workflow with only two touch points and 10 minutes of hands-on time
- Only 10 ng of DNA/RNA required, allowing for more samples to be tested
- Compatible with FFPE tissue as well as liquid biopsy samples

The Oncomine Precision Assay analyzes 78 variants, including mutations (45), CNVs (14), and fusion variants (19), across 50 key genes. Included are tumor suppressor genes such as TP53, cancer drivers, and resistance mutations. Content has been carefully

curated to include all potentially relevant targets of emerging importance for fast genomic profiling in clinical cancer research.

The results of Ion Torrent Oncomine Myeloid Assay GX v2 and the Oncomine Precision Assay (OPA) are shown in Table 2 and Table 3, respectively.

Apart from these, there are multimarker panels for different malignancies that are compatible with Genexus Integrated Sequencer and Ion GeneStudio S5 system (Table 4).

The NGS facility is installed with the help of Corporate Social Responsibility (CSR) of Gujarat Government.

Figure 2 and 3 show the representative images of results for Oncomine Precision Assay (OPA) and Oncomine Myeloid assay GX v2, respectively by Ion Torrent Genexus Software.

Cancer Type: G	lioblastoma					Date: 22 Sep 202
Sample Details			Sample	Details		
Sample Name:	Brain-3		Collecti	on Date:	20 SEP 2022	
Application Catego	ry: Solid Tum	or	Gender:		Unknown	
Sample Type:	DNA & RN	A	%Cellula	arity:	50	
Cancer Type:	Glioblasto	oma	%Necro	sis:		
Cancer Stage:	Unknown					
Results for	Sequence Va	ariations Det	ected			
SNVs/Indels						
Gene	Variant ID	Oncomine Variant Class	Oncomine Gene Class	AA Change	Call	Allele Frequency
=LT3	COSM785	Hotspot	Gain-of-Functio n	p.D835H	PRESENT (HETERO ZYGOUS)	0.311
DH2	COSM33733	Hotspot	Gain-of-Functio n	p.R172K	PRESENT (HETERO ZYGOUS)	0.423
NTRK1	BT104	Hotspot	Gain-of-Functio n	p.V573M	PRESENT (HETERO ZYGOUS)	0.041
Fusions						
Oncomine Driver Gene	Variant ID	Oncomine Variant Class	Oncomine Gene Class	Туре	Call	Read Counts
ESR1	ESR1-CCDC170.E2 C8.1	Fusion	Gain-of-Functio n	Fusion	PRESENT	41
-GFR1	BAG4-FGFR1.B1F2	Fusion	Gain-of-Functio n	Fusion	PRESENT	26
CNVs						
	Oncomino	Variant Class	acomina Cono Class	Call	Copy N	lumbor

Figure 2: Ion Torrent Genexus Software results for Oncomine Precision Assay (OPA)

Cancer Type: N	/lyoepithelial	Carcinoma					Date: 17 Sep 202
Sample Details			S	ample	Details		
Sample Name: AML-10 Application Category: Hematole Sample Type: DNA & RI Cancer Type: Myoepith Cancer Stage: Unknown		VIL-10 ematologic Cancer VA & RNA yoepithelial Carcinoma Iknown	C G % %	Collection Date: Gender: %Cellularity: %Necrosis:		13 SEP 2022 Female	
Results foi SNVs/Indels	rSequend	ce variations Det	ected				
Gene	Variant ID	Oncomine Variant Class	Oncomine G Class	ene	AA Change	Call	Allele Frequency
FLT3		FLT3ITD	Gain-of-Fund n	ctio	p.Asp586_Arg595 dup	PRESENT (HETERO ZYGOUS)	0.002
FLT3		FLT3ITD	Gain-of-Fund n	ctio	p.Val592_Asp593 insAlaMetThrGly SerSerAspAsnGlu TyrPheTyrVal	PRESENT (HETERO ZYGOUS)	0.035
FLT3		FLT3ITD	Gain-of-Fund n	ctio	p.Glu598_Tyr599 insSerTyrValAsp PheArgGluTyrGlu	PRESENT (HETERO ZYGOUS)	0.003
FLT3		FLT3ITD	Gain-of-Fund n	ctio	p.Tyr597_Glu598 insAspArgValGln ValThrSerSerSer AspAsnGluTyrPhe TyrValAspPheArg GluTyr	PRESENT (HETERO ZYGOUS)	0.211
FLT3		FLT3ITD	Gain-of-Fund n	ctio	p.Glu596_Tyr597 insAspProAspPhe ArgGlu	PRESENT (HETERO ZYGOUS)	0.003
FLT3		FLT3ITD	Gain-of-Fund n	ctio	p.Glu596_Tyr597 insAspProAspPhe ArgGlu	PRESENT (HETERO ZYGOUS)	0.077
FLT3		FLT3ITD	Gain-of-Fund n	ctio	p.Glu596_Tyr597 insAspProAspPhe ArgGlu	PRESENT (HETERO ZYGOUS)	0.074
FLT3		FLT3ITD	Gain-of-Fund n	ctio	p.Leu601_Lys602 insGlySerGlnLeu GlnMetValGlnVal ThrGlySerSerAsp AsnGluTyrPheTyr ValAspPheArgGlu TyrGluTyrAspLeu	PRESENT (HETERO ZYGOUS)	0.002
FLT3		FLT3ITD	Gain-of-Fund n	ctio	p.Tyr597_Glu598 insAspArgValGln ValThrGlySerSer	PRESENT (HETERO ZYGOUS)	0.204
					AspAsnGluTyrPhe TyrValAspPheArg GluTyr		
FLT3		FLT3ITD	Gain-of-Fund n	ctio	p.Arg595_Glu596 insLysGluAsnAsn GluTyrPheTyrVal AspPheArg	PRESENT (HETERO ZYGOUS)	0.009
WT1		Truncating	Loss-of-Fun n	ctio	p.Leu383CysfsTe r11	PRESENT (HETERO ZYGOUS)	0.095
WT1		Truncating	Loss-of-Fun n	ctio	p.Arg375AspfsTe r8	PRESENT (HETERO ZYGOUS)	0.353
WT1	COSM27309	Truncating	Loss-of-Fun n	ctio	p.Ser386LeufsTe r71	PRESENT (HETERO ZYGOUS)	0.477
Fusions None Detected							

Figure 3: Ion Torrent Genexus Software results for Oncomine Myeloid assay GX v2 $\,$